
Evaluation of High-Resolution Precipitation Products over

the Rwenzori Mountains (Uganda)

FALUKU NAKULOPA,a INNE VANDERKELEN,a JONAS VAN DE WALLE,b NICOLE P. M. VAN LIPZIG,b

HOSSEIN TABARI,c LIESBET JACOBS,b,d COLLINS TWEHEYO,e OLIVIER DEWITTE,f AND WIM THIERYa

a Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
b Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium

c Department of Civil Engineering, KU Leuven, Leuven, Belgium
d Institute for Biodiversity and EcosystemDynamics, University of Amsterdam, Amsterdam, Netherlands

e Mountains of theMoon University, Fort Portal, Uganda
f Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium

(Manuscript received 30 May 2021, in final form 29 December 2021)

ABSTRACT: The Rwenzori Mountains, in southwest Uganda, are prone to precipitation-related hazards such as flash
floods and landslides. These natural hazards highly impact the lives and livelihoods of the people living in the region. How-
ever, our understanding of the precipitation patterns and their impact on related hazardous events and/or agricultural pro-
ductivity is hampered by a dearth of in situ precipitation observations. Here, we propose an evaluation of gridded
precipitation products as potential candidates filling this hiatus. We evaluate three state-of-the-art gridded products, the
ERA5 reanalysis, IMERG satellite observations, and a simulation from the convection-permitting climate model (CPM),
COSMO-CLM, for their ability to represent precipitation totals, timing, and precipitation probability density function. The
evaluation is performed against observations from 11 gauge stations that provide at least 2.5 years of hourly and half-hourly
data, recorded between 2011 and 2016. Results indicate a poor performance of ERA5 with a persistent wet bias, mostly for
stations in the rain shadow of the mountains. IMERG gives the best representation of the precipitation totals as indicated
by bias score comparisons. The CPM outperforms both ERA5 and IMERG in representing the probability density func-
tion, while both IMERG and the CPM have a good skill in capturing precipitation seasonal and diurnal cycles. The better
performance of CPM is attributable to its higher resolution. This study highlights the potential of using IMERG and CPM
precipitation estimates for hydrological and impact modeling over the Rwenzori Mountains, preferring IMERG for precip-
itation totals and CPM for precipitation extremes.
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1. Introduction

East Africa experiences a high variability in precipitation,
both in time and space. This variability is amplified by the het-
erogeneous land cover and complex orography. High variabil-
ity in precipitation may adversely affect crop yields (Kisembe
et al. 2019), energy, and water availability via its impact on
river discharge and lake levels (Vanderkelen et al. 2018a), as
well as human safety due to intense precipitation events caus-
ing flash floods and landslides (Jacobs et al. 2016a,b, 2018;
Osuret et al. 2016).

Better understanding and development of sustainable strate-
gies to minimize the related socioeconomic impacts requires the
use of accurate precipitation datasets. A dense network of in situ
gauge measurements would form the most reliable of such data-
sets; however, East Africa suffers from rain gauge scarcity. This
gauge scarcity is even more prevalent in mountainous areas like
the Rwenzori Mountains, in which the complex terrain makes
the setup and maintenance of gauging stations difficult.

Consequently, for these regions, precipitation estimates from
atmospheric reanalyses, satellites, or climate model simulations
are often used as alternative precipitation data sources.

The European Center for Medium-Range Weather Forecasts
(ECMWF) is one of the leading developers of atmospheric rean-
alyses through the ECMWF Re-Analysis (ERA) series (Gibson
et al. 1997). Their reanalyses provide estimates of climate varia-
bles by assimilating observations into the center’s numerical
weather prediction model (Hersbach et al. 2020). The resulting
datasets have found satisfactory application in climate change
studies, climate model evaluations, dynamical downscaling, and
extreme weather investigations (Kisembe et al. 2019; Delhasse
et al. 2020; Gleixner et al. 2020; Thiery et al. 2017).

ERA5, the fifth generation and latest reanalysis product
from ECMWF, is based on the Integrated Forecasting System
(IFS) Cy41r2 forecast model (Hersbach et al. 2020). Compared
to its predecessor, ERA-Interim, ERA5 includes improved
parameterization schemes, larger observational datasets, and a
finer resolution, resulting in a better performance (Hersbach
et al. 2020, 2019). Over East Africa, ERA5 captures the spatial
distribution of precipitation reasonably well, though positive
biases are consistently reported, especially over complex terrain
(Van de Walle et al. 2020; Gleixner et al. 2020). These biases are
mostly inherited from the IFS model, since there are no precipi-
tation observations assimilated over this region.
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Over the African continent, the sign of bias in ERA5 pre-
cipitation estimates is not uniform. For instance, while ERA5
is reported to overestimate precipitation over East Africa’s
highlands, it underestimates precipitation in West Africa,
especially over the Guinea Highlands when compared to
gridded observations of Climate Research Unit (CRU),
Global Precipitation Climatology Centre (GPCC), and satel-
lite estimates of Climate Hazards Group Infrared Precipita-
tion with Stations (CHIRPS) (Quagraine et al. 2020).
Similarly, the performance of ERA5 appears to vary at a
regional level too. For example, ERA5 shows a better perfor-
mance over Tanzania compared to the neighboring Uganda
(Gleixner et al. 2020). Whereas, in general, ERA5 has a
reduced wet bias in comparison to its predecessor, ERA-
Interim, this is not the case for Uganda, where ERA-Interim
outperforms ERA5 (Gleixner et al. 2020). This highlights the
need to validate ERA5 precipitation estimates locally against
local in situ observations.

Van de Walle et al. (2020) evaluated both the Consortium
for Small-Scale Modeling in its Climate Mode (COSMO-CLM)
simulations and ERA5 against satellite observations over the
Lake Victoria basin and noted an overestimation of precipita-
tion by both products. The magnitude of the bias varied over
the lake basin, the lake surface, and the mountainous regions,
with the largest biases seen over the mountainous region. Com-
pared to COSMO-CLM, ERA5 exhibited the largest biases.
Since this study used satellite products as the benchmark, it
lacked a comparison with in situ observations.

Satellite products are one of the most known and recognized
sources of precipitation estimates. Satellite precipitation estimates
are mostly retrieved based on either or both the passive microwave
sensors mounted on the low-Earth-orbiting satellites and the ther-
mal infrared sensors mounted on the geostationary satellites. Pas-
sive microwave sensors infer information from absorption and
scattering properties of hydrometeors in the air (Cui et al. 2020),
while infrared sensors base their estimates on cloud-top tempera-
tures (Joyce et al. 2004). The direct interaction with hydrome-
teors (such as ice particles or raindrops) makes estimates from
microwave sensors more accurate compared to those from
infrared sensors (Guilloteau et al. 2017; Huffman et al. 2020a).
However, the passive microwave sensors face challenges of
background emissions and low observation frequency which
result in data gaps (Dinku et al. 2011). These gaps are often
filled by estimates from infrared sensors, which are available
at high temporal resolution (Joyce et al. 2004).

Generally, both sensors suffer limitations as a result of the
retrieval processes employed. Notably, mountainous areas
like the Rwenzori Mountains present unique challenges to
both sensor types. The warm orographic rains in these areas
might be underestimated by the infrared sensors as a result of
their low temperature threshold (Kimani et al. 2017). Yet
again, the presence of frozen surfaces on the mountains may
be wrongly interpreted as precipitation by infrared sensors
(Cui et al. 2020). Likewise, Petković and Kummerow (2017)
reported passive microwave sensors tend to overestimate
deep convection; this, in addition to its low effective resolu-
tion, leads to poor capture of the subgrid variability in the
mountainous areas (Guilloteau et al. 2017).

To feed off the added value of both sensors, most of the
recent satellite precipitation products employ a combination
of both passive microwave and thermal infrared sensors,
optionally supplemented with an active precipitation radar
(Huffman et al. 2020a; Kidd et al. 2020). Despite this asset,
these products still exhibit underperformance over complex
terrain (Monsieurs et al. 2018; Dinku et al. 2011; Dezfuli et al.
2017; Asong et al. 2017; Sungmin and Kirstetter 2018). For
example, over the Rwenzori Mountains, both the research
and real-time versions of the Tropical Rainfall Measuring
Mission (TRMM) 3B42V7 Multisatellite Precipitation Analy-
sis (TMPA) underestimate precipitation amounts (Monsieurs
et al. 2018; Diem et al. 2014). The poor performance is mainly
attributed to the coarse resolution and the limited overpass
time of the satellites, missing some short-lived convective
events (Monsieurs et al. 2018).

The recent high-resolution satellite product, the Integrated
Multi-satellitE Retrievals for Global Precipitation Measure-
ment (IMERG; Huffman et al. 2020a,b,c) produced by the
National Aeronautics and Space Administration (NASA)
Goddard Space Flight Center (GSFC) presents improved skill
against other satellite products for many regions worldwide
(Prakash et al. 2016; Xu et al. 2017; Dezfuli et al. 2017; Asong
et al. 2017; Tan et al. 2019a; Sungmin and Kirstetter 2018; Cui
et al. 2020). This improvement is attributed to its high resolu-
tion, improved morphing system, and the calibration against
gauge observations which minimizes biases. The added value
of the gauge bias correction is, however, less evident in
regions with a poor gauge station network (Sungmin and
Kirstetter 2018; Asong et al. 2017).

Despite the improvement IMERG presents, it is reported
to underestimate light rainfall, especially in mountainous
regions (Xu et al. 2017; Cui et al. 2020; Sahlu et al. 2016). This
is in contrast with what Tan et al. (2016) observed in the
United States mid-Atlantic region where IMERG overesti-
mates light rainfall while underestimating heavy rains. Over
the Ethiopian mountain ranges, IMERG exhibits an underes-
timation of precipitation amounts with a bias ratio of over
96% (Sahlu et al. 2016). Over the Lake Victoria basin,
IMERG version 6 (IMERG V06) better captures the diurnal
precipitation cycle compared to TMPA products, with a
smaller phase lag of less than 1 h (Tan et al. 2019a). These
results highlight the potential of IMERG over East Africa
where precipitation is highly convective and spatiotemporally
variable.

In addition to reanalysis and satellites, precipitation esti-
mates are obtained from climate model simulations. Climate
model simulations provide precipitation estimates by solving
mathematical equations that represent dynamical and physical
processes in the climate system. On a global scale, global cli-
mate models (GCMs) are typically run at resolutions of at least
∼100 km and parameterize subgrid processes like radiative
transfer, cloud microphysics, turbulence, and convection. These
parameterizations induce uncertainties in the representation of
fine-scale physical processes and the resulting precipitation esti-
mates (Kim et al. 2014), particularly over tropical areas (Yang
et al. 2015; Mukabana and Piekle 1996; Fraedrich 1972; Coe
and Bonan 1997). In an effort to reduce the uncertainties in
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GCMs, regional climate models (RCMs) are developed to sim-
ulate smaller regions and at higher resolutions.

Many RCM simulations analyzed over East Africa show a
similar sign in precipitation bias as their driving GCM but
generally reduce the magnitude of the bias (Kisembe et al.
2019; Dosio et al. 2019; Thiery et al. 2015; Prein et al. 2013;
Akkermans et al. 2014). This improvement can be attributed
to the higher resolution, which allows capturing more spatial
detail. However, even at high spatial resolutions of ∼5–50 km,
RCM simulations still face challenges in representing the spa-
tial distribution and diurnal cycle of precipitation, mainly due
to the parameterization of convection (Thiery et al. 2015).
This necessitates simulations to be conducted at even higher
resolutions and with minimal or no parameterization schemes
for convection involved.

Simulations at resolutions below ∼4 km, at which convec-
tion is no longer parameterized, have shown to substantially
improve precipitation estimates (Helsen et al. 2020; Kendon
et al. 2019; Coppola et al. 2020; Vanden Broucke and Van
Lipzig 2017; Vanden Broucke et al. 2019; Tabari et al. 2016;
Prein et al. 2015; Meredith et al. 2015; Prein et al. 2013). Such
convection-permitting models (CPMs) stand out in capturing
precipitation diurnal cycles, extreme precipitation events, and
spatial distribution of precipitation, especially over complex
terrain (Ban et al. 2014; Fosser et al. 2015; Helsen et al. 2020;
Kendon et al. 2019; Prein et al. 2013; Van de Walle et al. 2020;
Finney et al. 2020).

Many researchers rely on the aforementioned reanalysis
and satellite and climate model simulation precipitation prod-
ucts, despite their shortcomings in performance over complex
terrain (Dille et al. 2019; Depicker et al. 2020; Monsieurs et al.
2019; Depicker et al. 2021; Vanderkelen et al. 2018b). There-
fore, there is need and necessity to locally validate these
gridded precipitation products against in situ observations.

In this study, we perform, for the first time, a gauge obser-
vations–based evaluation of three state-of-the-art gridded
precipitation products: the ERA5, IMERG V06, and a CPM
simulation with the RCM COSMO-CLM over the Rwenzori
Mountains and Lake Kivu. The products are consistently eval-
uated against in situ observations from 11 gauge stations,
10 of which are located at the Rwenzori Mountains and 1 on
Lake Kivu. Each station has data spanning on average
2.5 years, recorded between 2011 and 2016. The products are
evaluated for their skill to represent the mean precipitation
amounts, seasonal and diurnal cycles, precipitation probabil-
ity density function (PDF), and extreme precipitation indices,
whereby several relevant metrics are computed to score the
three products objectively.

2. Data and methods

a. Study area

The Rwenzori Mountains, also known as the Mountains of
the Moon, are located along the western branch of the East
African Rift, at the border between Uganda and the Demo-
cratic Republic of Congo. The Mountains get their name
from a local phrase “Ruwenzori,” which means “rain maker”

or “cloud king” (Uganda Wildlife Authority 2020). The area
represents a key example of a region where precipitation is
central to many aspects of life; unfortunately, precipitation
patterns in this particular area remain poorly understood.

The Rwenzori Mountains study area extends through the lon-
gitudes of 29.08–30.88E and latitudes of 0.28S–1.08N (Fig. 1). The
mountains have a maximum altitude of 5109 m above sea level
and cover an area of about 6000 km2 (Gummert et al. 2016).
On average, the mountain range receives over 1500 mm of
precipitation per year (Majaliwa et al. 2015). These amounts
strongly vary with elevation (Roller et al. 2012; Van de Walle
et al. 2020) and the prevailing wind (Thiery et al. 2015). The
mountain peaks are covered by glaciers and have river
tributaries discharging into the White Nile.

Next to the Rwenzori Mountains, we evaluate the precipita-
tion products for a gauge station at Lake Kivu (Fig. A1 in
appendix A). Lake Kivu is located south of the Rwenzori
Mountains at the border between Rwanda and the Demo-
cratic Republic of Congo. It is one of the major African Great
Lakes, at an altitude of 1463 m above sea level (MSL), cover-
ing an approximate area of 2400 km2 and having an average
depth of 240 m (maximum depth of 485 m) (Kranenburg et al.
2020; Thiery et al. 2014b). Although the four major African
Great Lakes hardly influence precipitation beyond their
shores, they increase precipitation over the lake surface
(187%) on average (Thiery et al. 2015). This enhancement is
highest over Lake Kivu (1145%) (Thiery et al. 2015), and
these increased precipitation amounts may trigger flooding
through lake backflows. This is one major reason of evaluat-
ing precipitation products over Lake Kivu, in addition to the
lake having unique long-term in situ meteorological observa-
tions, which is not common across the African Great Lakes
region. The inclusion of Lake Kivu allows comparison in per-
formance of the products over strong orography and large
water bodies in the region.

b. Data

A total of 11 precipitation gauge stations are used in this
study (Table 1). Ten of the stations}with 1-h resolution data}
are located across the slopes of the Rwenzori Mountains
(Fig. 1) and are managed by the AfReSlide project (Monsieurs
et al. 2018). The other gauge station is located at Lake Kivu
(Fig. A1), collects observations at half-hourly resolution, and is
managed by the EAGLES project (Rooney et al. 2018; Thiery
et al. 2014a). Although their exact observation periods and data
length differ, each station provides at least 2.5 years of data
recorded between 2011 and 2016 (Table 1).

ERA5 precipitation estimates}with a ∼31-km spatial and
1-h temporal resolution}are downloaded for the period
2011–16 (Table 2). While precipitation observations are not
directly assimilated into ERA5 over Africa (Hersbach et al.
2020), the estimates are indirectly constrained via the assimi-
lation of other meteorological variables into the IFS model.
The IFS model employs the upgraded Tiedtke (1993) large-
scale cloud scheme (Tompkins et al. 2007; Forbes and
Ahlgrimm 2014), and the improved Tiedtke (1989) convection
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parameterization scheme (Hirons et al. 2013a,b) to simulate
large-scale and convective precipitation, respectively.

Satellite precipitation estimates are obtained from the GPM.
Final run precipitation estimates, precipitationCal, from
IMERG V06 are downloaded for the period 2011–16 (Table 2).
IMERG is a merged multisatellite gridded precipitation product
which replaced the TMPA and provides precipitation estimates
from 2000 to present (Huffman 2020; Huffman et al. 2020c).
The product uses estimates from multiple satellites such as the
TRMM Microwave Imager, GPM Microwave Imager, the
Advanced Microwave Scanning Radiometer 2, and the Special

Sensor Microwave Imager/Sounder, etc. (Huffman et al. 2020a).
The product has a ∼11-km spatial, 30-min temporal resolution
and is released in three latencies: an early run, a late run, and
the final run with latency periods of 4 h, 14 h, and 3.5 months,
respectively. The algorithm merges and interpolates retrievals
from passive microwave and infrared sensors, and calibrates
them against precipitation gauge observations (for the final
run) (Huffman et al. 2020c). The final run estimates, which are
used in this study, are bias corrected using monthly gauge data
from the Global Precipitation Climatology Center (GPCC)
(Huffman et al. 2020a,c). It is, however, important to note that

FIG. 1. The Rwenzori Mountains study area. The red points represent the gauge stations. The
digital elevation model is obtained from Shuttle Radar Topography Mission Data. The contour
lines are at intervals of 500 m. The red cross in the inset at the top left indicates the location of
the Rwenzori Mountains on the map of Africa.

TABLE 1. Overview of the gauge stations used in the analysis, the available data length, and mean annual precipitation (P) amounts.
The ID is the rank of the station according to elevation above sea level. Lake Kivu station is purposely put at the bottom of the table.

ID
Station
name Longitude Latitude

Elevation
(MSL) Start date End date

Resolution
(min)

Mean
annual P
(mm yr21) Source

1 Mahango 3080′0′′E 088′50′′N 1907 16 Aug 2014 28 Apr 2019 60 814.3 Monsieurs et al. (2018)
2 Ruboni 3082′4′′E 0820′44′′N 1660 13 Aug 2014 28 Apr 2019 60 1274.9 Monsieurs et al. (2018)
3 Kabonero 3087′39′′E 0830′29′′N 1652 11 Aug 2014 7 Apr 2019 60 945.2 Monsieurs et al. (2018)
4 Kluge 30814′57′′E 0835′41′′N 1524 9 Oct 2014 27 Jan 2018 60 1001.1 Monsieurs et al. (2018)
5 Kilembe 3080′2′′E 0813′5′′N 1473 17 Aug 2014 2 Sep 2018 60 1282.2 Monsieurs et al. (2018)
7 Bukonzo 3085′56′′E 0842′50′′N 1096 26 Aug 2014 1 May 2019 60 1016.5 Monsieurs et al. (2018)
8 Mubuku 3087′19′′E 0814′19′′N 1057 12 Oct 2014 27 Jan 2018 60 554.1 Monsieurs et al. (2018)
9 Bundibugyo 3083′45′′E 0842′28′′N 949 12 Oct 2014 19 Jan 2019 60 1070.3 Monsieurs et al. (2018)
10 Bubandi 29858′49′′E 0838′34′′N 936 26 Aug 2014 1 May 2019 60 692.9 Monsieurs et al. (2018)
11 Kasitu 30810′17′′E 0852′7′′N 664 26 Aug 2014 1 May 2019 60 931.9 Monsieurs et al. (2018)
6 Lake Kivu 29814′15′′E 1843′30′′S 1461 9 Oct 2012 6 Mar 2019 30 1167.3 Rooney et al. (2018)
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the gauge stations used in this study are not part of the GPCC
dataset, and are, therefore, independent of the calibration of
IMERG.

RCM-based precipitation estimates are provided by Van de
Walle et al. (2020), who applies the COSMO-CLM over the
region in a tropical, convection-permitting configuration
(Panitz et al. 2014; Brousse et al. 2020). The one-dimensional
Freshwater Lake (FLake) model parameterization scheme is
online coupled and complements the default TERRA-ML
land surface scheme, whereas for the atmosphere a two-
moment cloud microphysics scheme is activated. The model is
centered at Lake Victoria and its domain covers both the east-
ern and western branches of the East African Rift. Initial and
boundary conditions of the simulations are provided by the
ERA5 reanalysis. The simulations provide precipitation data at
a ∼2.8-km spatial and 15-min temporal resolution, and span a
time period of 2010–16 (including one year of spinup). For sim-
plicity, the convection-permitting simulation from COSMO-
CLM is hereafter referred to as CPM.

c. Methodology

For consistency, all gridded products are remapped to the
spatial resolution of the CPM product (2.8 km 3 2.8 km) using
second-order conservative remapping (Jones 1999). This remap-
ping technique ensures that the integral of the precipitation
amounts reported at the original resolution is conserved.

Except for the spatial distribution comparison, we employ a
point-to-grid evaluation due to the limited number of stations
that cannot permit regridding the gauge observations without cre-
ating severe uncertainties (Camberlin et al. 2019; Liu et al. 2019;
Tan et al. 2020). Despite the limitations/challenges of point-to-
grid analyses and evaluations, especially for extreme precipitation
indices, in our case the approach permits evaluation of the prod-
ucts against unaltered primary data. This is important more so in
regions with scanty observations where regridding gauge observa-
tions seems impossible or would result in severe uncertainties.
Similarly, cross-resolution evaluation approach is still widely
employed in climate model evaluations, including studies cited by
the Intergovernmental Panel on Climate Change (Chen and Sun
2015; Yatagai et al. 2019; Sillmann et al. 2013) and in the evalua-
tion of many gridded precipitation products (Camberlin et al.
2019; Dulière et al. 2011; Zhang et al. 2009; He et al. 2021; Liu
et al. 2019; Ayoub et al. 2020; M. L. Tan et al. 2018; Caparoci
Nogueira et al. 2018; Wu et al. 2019; Tan et al. 2020; Ensor and
Robeson 2008; Silva et al. 2007; Hewitson and Crane 2005).

In the point-to-grid evaluation, to obtain corresponding
grid time series, the product estimates for the grid cell con-
taining the station are extracted. Only time periods available
in the corresponding gauge station observations are

considered in the evaluation, except for the spatial distribu-
tion analysis for which the entire period of 2011–2016 is used.

The IMERG and CPM data and Lake Kivu observations
data series, which are originally at subhourly resolution, are
transformed to hourly time scales for the hourly analyses by
averaging for the IMERG, and summing for CPM and Lake
Kivu. Similarly, all the gauge observations and products esti-
mates are accumulated to daily time scale for the respective
daily time-scale analyses.

First, the performance of the precipitation products is eval-
uated for every gauge station using performance metrics for
precipitation totals. The mean bias (Bias) is computed as the
average difference between the product estimates and the
observations. The mean absolute error (MAE) is computed
as the average absolute difference between the product esti-
mates and observations. The mean square error (MSE) aver-
ages the squared errors between the product estimates and
observations, and the root-mean-square error (RMSE) is
computed by taking the root of the squared errors. The
Nash–Sutcliffe efficiency (NSE) is used to assess the normal-
ized error variance of the precipitation time series of the
products and its values range from 2‘ to 1. A negative value
of NSE implies that the mean of the observations has a
smaller error variance than the precipitation product. A good
performing product has a NSE value above 0.5. The Spear-
man rank correlation evaluates the monotonicity of the rela-
tionship between the product estimates and observations.
This coefficient varies between 21 and 11, with a perfect
product having a value of 11. A value 0 implies that there is
no correlation between the product estimates and the obser-
vations, and negative values indicate negative correlation.
The Perkins skill score (PSS) quantifies the similarity between
the probability density functions of the observations and
products (Perkins et al. 2007). PSS values range from 0 to 11,
with a perfect product having a value of11.

Equations for all performance metrics are provided in
appendix B.

In addition to the performance metrics for precipitation
means, the performance of the products for extreme precipi-
tation is evaluated using six extreme precipitation indices
from the Expert Team on Climate Change Detection and
Indices (ETCCDI; Zhang et al. 2011): (i) the monthly maxi-
mum 1-day precipitation (Rx1day; mm); (ii) the monthly max-
imum consecutive 5-day precipitation (Rx5day; mm); (iii) the
simple daily intensity index (SDII; mm day21), representing
the ratio of the accumulated precipitation amounts on wet
days to the total number of wet days; (iv) the heavy precipita-
tion days (R20mm; days), the average number of days in a
year with at least 20 mm of precipitation; (v) the consecutive

TABLE 2. Overview of the gridded precipitation products.

Product type ERA5 reanalysis IMERG satellite COSMO-CLM CPM

Spatial resolution 31 km 11 km 2.8 km
Temporal resolution 1 h 30 min 15 min
Data period 2011–16 2011–16 2011–16
Data source https://cds.climate.copernicus.eu https://gpm.nasa.gov/data/ Van de Walle et al. (2020)
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dry days (CDD; days), the average annual maximum number
of consecutive days with precipitation less than 1 mm; and
(vi) the consecutive wet days (CWD; days), the average
annual maximum number of consecutive days with at least 1
mm of precipitation.

Finally, the skill of the products to reproduce observed pre-
cipitation intensities is evaluated using PDF plots. We deploy
this approach well while cognizant of the uncertainties/chal-
lenges associated with point-to-grid cell evaluations, more so
in evaluating extremes (Ensor and Robeson 2008; Hewitson
and Crane 2005). We, therefore, limit the evaluations to only
full-day accumulated precipitation. Accumulation to a larger
daily time scale (in our case of 24 time steps for ERA5, 48 for
IMERG, and 96 for CPM) minimizes the associated errors
and uncertainties (Dulière et al. 2011; Zhang et al. 2009).

3. Results

a. Evaluation of precipitation totals

All products situate the highest mean annual precipitation
totals around the most elevated parts of the Rwenzori Mountains
and in the Congo basin. However, the exact location of the pre-
cipitation maximums is not unanimous (Fig. 2). ERA5 has its
highest precipitation amounts west of the mountain peak,
IMERG has it east of the peak, while the CPM precipitation dis-
tribution closely follows the altitude profile with higher amounts
at higher altitudes. A detailed localization of the precipitation
peak is challenging, as the resolution of the products strongly dif-
fers. ERA5, for example, has the individual grid cells clearly
delineated, yet one can barely see the difference in values for
IMERG due to the small range of values (see Fig. A2 for clarity).

Quantitatively, there is a clear difference in the Rwenzori
Mountains domain average precipitation totals with ERA5

having the highest domain average of 3156 mm yr21, followed
by CPM (1930 mm yr21) and last IMERG (1268 mm yr21). The
large difference among these state-of-the-art products necessi-
tates their evaluation against gauge observations.

Similar to the domain averages, there are large variations in
precipitation biases among the products across the different
stations (Table 3). ERA5 highly overestimates precipitation
at all stations, with biases ranging from 1104 mm yr21 at
Kasitu to over 11900 mm yr21 at the southeastern stations
(Mahango, Ruboni, Kilembe, and Mubuku) and Kabonero
station. The mountain stations mean (MTSM) represents an
average of the 10 mountain stations, for which ERA5 has a
bias of 11553 mm yr21 (1147%). IMERG, in contrast, has
both positive and negative biases depending on the station,
and consequently the lowest bias of 254 mm yr21 (25%) for
the MTSM. The CPM exhibits generally small biases [with a
maximum of 676 mm yr21 (158%) at Bubandi] and has an
intermediate bias of 219 mm yr21 (121%) for the MTSM.
Consequently, all products, generally, exhibit low correlation
with the observations at all stations (Fig. A3).

Besides the mean annual precipitation bias, performance
metrics on hourly precipitation for the individual stations also
show that ERA5 persistently overestimates precipitation totals
since it encompasses the largest values for Bias and MAE at
most of the stations (Fig. 3). IMERG has the best skill in esti-
mating the precipitation totals indicated by its better scores in
Bias, MAE, MSE, RMSE, NSE, and Spearman rank correla-
tion at all stations. Finally, the CPM outperforms both ERA5
and IMERG in capturing the PDF of the precipitation intensi-
ties across all stations as indicated by its high PSS values.

Similar conclusions are drawn when analyzing performance
metrics for daily accumulated precipitation (Fig. 4). At daily time
scale, the overestimation of precipitation amounts by ERA5 is

FIG. 2. Mean annual precipitation estimates of (a) ERA5, (b) IMERG, and (c) CPM for the period 2011–16. Gray
lines show altitude contours. Purple dots are the gauge stations indicated by their respective number codes, with IDs
given in Table 1. For a clearer spatial pattern of IMERG, see Fig. A2, put to a different color scale.
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also clearly visible in the large values for Bias, MAE, MSE, and
RMSE, especially for the southeastern stations. IMERG still
ranks best for most metrics and stations, except for PSS, where
CPM holds the best scores. A highly notable feature is that at
both hourly and daily time scales, the difference in performance
is larger across precipitation products than across stations.

Comparison of the products on a Taylor diagram for the
hourly time scale shows that ERA5 and IMERG estimates
demonstrate less temporal variability compared to the in situ
observations, which leads to an underestimation of the stan-
dard deviation at the majority of the stations (Fig. 5a). CPM
exhibits the closest agreement weith the observations in terms
of standard deviation, confirming its ability to capture the
PDF of the precipitation intensities as earlier highlighted by
the high PSS scores. For most stations, IMERG has the lowest

centered root-mean-square difference (RMSD) values in
which both ERA5 and CPM perform poorly. IMERG’s better
scores in RMSD confirms its good skill in estimating precipi-
tation totals.

The Taylor diagram for the daily time scale estimates
(Fig. 5b) shows a similar pattern to that of the hourly esti-
mates, with the exception of the standard deviation which is
overestimated by ERA5 for the majority of the stations. From
the two diagrams, it is visible that the temporal aggregation
from hourly to daily resolution improves the skill of all prod-
ucts in terms of correlation.

b. Seasonal and diurnal cycles

All the products convincingly capture the phase of the
observed bimodal seasonal cycle of precipitation with the

FIG. 3. Performance metrics for hourly precipitation at every station and the mountain stations mean (MTSM). The
metrics shown are (a) Bias, (b) mean absolute error (MAE), (c) mean square error (MSE), (d) root-mean-square error
(RMSE), (e) Nash–Sutcliffe efficiency (NSE), (f) Spearman rank correlation (Spearman), and (g) Perkins skill score
(PSS). Lighter shading indicates better performance.

TABLE 3. Annual mean precipitation bias and percent relative bias at each station and the mountain stations mean (MTSM).

ERA5 IMERG CPM

Station Bias (mm yr21) Relative bias Bias (mm yr21) Relative bias Bias (mm yr21) Relative bias

Mahango 2555 1314% 292 211% 208 126%
Ruboni 2490 1195% 13 11% 295 123%
Kabonero 2018 1213% 138 115% 410 143%
Kluge 676 167% 238 24% 166 117%
Kilembe 2473 1193% 2194 215% 297 28%
Bukonzo 874 186% 242 24% 436 143%
Mubuku 1922 1347% 204 137% 228 141%
Bundibugyo 568 153% 2254 224% 86 18%
Bubandi 1070 1154% 10 11% 400 158%
Kasitu 104 111% 218 22% 123 113%
MTSM 1553 1147% 254 25% 219 121%
Kivu 1319 1113% 109 19% 676 158%
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two wet seasons, March–May (long rains) and September–
November (short rains), at most stations (Fig. 6). ERA5, how-
ever, exhibits a persistent overestimation of the precipitation
amplitudes, especially during wet months. This overestima-
tion is strongest at the southern stations and Kabonero sta-
tion. Different from ERA5, both IMERG and CPM
convincingly capture the precipitation amplitudes at the
majority of the stations.

Similar to the seasonal cycle, all the products agree on the
phase of the diurnal cycle, featuring a prominent afternoon
precipitation peak (Fig. 7). ERA5, again, overestimates pre-
cipitation amplitudes, especially at the peak hours from 1200
to 2200 local time and at the southeastern stations and Kabo-
nero station. Uniquely, ERA5 exhibits a bimodal peaking
within the diurnal cycle with a small depression occurring
between 1600 and 2000 local time at all stations. Similarly,

FIG. 4. Performance metrics for daily precipitation for every station and the mountain stations mean (MTSM). The
metrics shown are (a) Bias, (b) mean absolute error (MAE), (c) mean square error (MSE), (d) root-mean-square error
(RMSE), (e) Nash–Sutcliffe efficiency (NSE), (f) Spearman rank correlation (Spearman), and (g) Perkins skill score
(PSS). Lighter shading indicates better performance.

FIG. 5. Taylor diagram showing the performance of the precipitation products: ERA5 (blue dots), IMERG (green
dots), and CPM (red dots) for the (a) hourly precipitation and (b) daily precipitation. For every product, each dot rep-
resents either a station or the mountain stations mean (MTSM). The gray arcs centered at the origin are for standard
deviation, the radial lines indicate the Pearson correlation coefficient, and the gray arcs centered at the 1.0 on the
x axis are centered root-mean-square distance (RMSD). The standard deviation and RMSD are normalized by divid-
ing by the standard deviation of the observations.

J OURNAL OF HYDROMETEOROLOGY VOLUME 23754

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 06/08/22 08:23 AM UTC



different from ERA5, both IMERG and CPM show a close
agreement in the amplitudes of the diurnal cycle.

c. Evaluation of extremes

ERA5 exhibits the largest biases in extreme precipitation
intensity indices of the Rx1day, Rx5day, and SDII with an
overestimation at a majority of the stations mostly for Rx1day
and SDII (Fig. 8). There is also visible underestimation at
some stations. The sign of the bias depends on the location of
the station and the magnitude is highest at the southeastern
stations where the biases exceed 15 mm for Rx1day, 50 mm
for Rx5day, and 5 mm day21 for SDII. These large biases may
be because of the relatively coarse resolution of the reanalysis
and the small scale of the analyzed events. Additionally,
ERA5 also has large positive biases in the number of wet
days at all stations and this is also highest at the southeastern
stations with positive biases of up to 125 and 50 days for
R20mm and CWD, respectively.

Conversely, IMERG generally underestimates extreme
precipitation intensity at most stations, as expressed by the
negative biases in Rx1day, Rx5day, and SDII. However, it
slightly overestimates the number of wet days (R20mm and
CWD). CPM has the smallest bias for most indices at the
majority stations, which highlights its better skill in capturing
extreme precipitation events.

For the CDD, all products unanimously underestimate the
length of the dry periods at the southeastern stations as shown
by the large negative bias (Fig. 8f). At the rest of the stations,
IMERG still underestimates CDD while ERA5 and CPM
exhibit a mixed under- and overestimation. For more visuali-
zation and comparison, scatterplots for the indices are shown
in Fig. A4. Overall, all the products have a higher consistency
for the frequency indicators than for the intensity indicators.

CPM outperforms both ERA5 and IMERG in represent-
ing the PDF of the precipitation intensities and has the clos-
est agreement observations at all the stations at daily time
scale (Fig. 9). ERA5 overestimates the frequency of all
intensities at the majority of stations while IMERG shows a
close agreement for intensities below 10 mm day21 and
underestimates for higher intensities. This better perfor-
mance of CPM in capturing extreme precipitation indicators
still manifests when looking into how the products capture
the dry days; it is generally the closest to the observations
(Table A1 in appendix A).

Across the evaluations, all the products show no noticeable
difference in performance at Lake Kivu relative to the moun-
tain stations. This is apparent from the comparable skill with
the rest of the stations as visualized in the metrics heat maps,
cycle plots, climate extreme indices, and the PDF plots
(Figs. 3, 4, 6–10).

FIG. 6. Precipitation seasonal cycle (mmmonth21) for the observations, ERA5, IMERG, and CPM for each station and the mountain sta-
tions mean (MTSM). The period over which the data are averaged differs from station (see Table 1).
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4. Discussion

With too high precipitation amounts, large biases in the ampli-
tudes of the diurnal cycle, and underestimation of the frequency
of intense precipitation events, ERA5 poorly represents precipi-
tation in the Rwenzori Mountains. Two reasons could explain
this performance: (i) the direct effect of evaluating a coarse-reso-
lution gridded product against point observations (Brisson et al.
2016), and (ii) the convection parameterization scheme
employed in IFS (Zhang et al. 2016; Hersbach et al. 2020). The
coarse resolution implies that some subgrid scale features such
as orography-triggered convection and rain-shadow effects are
poorly represented (Zhang et al. 2016). The study identifies the
hilltops to receive the highest amounts of precipitation and con-
sequently, precipitation amounts at the gauge stations, which are
located on the hillslopes, are overestimated by the ERA5, per-
haps due to its low resolution. ERA5’s largest biases are at sta-
tions southeast of the mountain peak, which corresponds to the
rain shadow of the Rwenzori Mountains. It is also clear that sta-
tions with larger biases fall in the large blue grid cells on the spa-
tial maps (Fig. 2), suggesting that the spatial scale of our analysis
does not benefit coarse-resolution products, and highlighting the
need for downscaling and use of high-resolution products.

Additionally, the convection parameterization in ERA5’s
IFS model could be responsible for the large biases, especially
in the amplitudes of the diurnal cycle. Deficiencies in the

parameterization scheme were already shown to miss crucial
physical processes triggering orographic convection, such as
gravity waves or precipitation drifting, causing substantial
biases in precipitation (Hersbach et al. 2020). The biases
would be minimized if observations over the region were
included in the assimilation; unfortunately, this is not the case
here due to the scarcity or lack of observations over the
region. ERA5 precipitation estimates in this region are thus
largely dependent on the IFS model physics.

IMERG has the best skill in reproducing precipitation
means. Globally, such good performance could be attributed
to its calibration against the GPCC dataset (Tan et al. 2019b;
Huffman et al. 2020a). Over the Rwenzori Mountains it per-
forms well, though in this region, GPCC suffers from data
scarcity and unequal station distribution (Schneider et al.
2014). This leaves IMERG mainly dependent on satellite
retrievals which come with uncertainties too.

Despite the good performance for the precipitation totals,
IMERG exhibits a poor capture of the PDF of the precipita-
tion intensities. This can be explained by three factors: (i) sim-
ilar to ERA5, the direct effect of evaluating coarse-gridded
product against point observation plays a role, though less
than ERA5 due to IMERG’s higher resolution; (ii) uncertain-
ties in its calibration and morphing algorithms which poorly
represent light rain evaporation under clouds and may falsely
report anvils as precipitating clouds (Cui et al. 2020); and (iii)

FIG. 7. Diurnal cycles of precipitation for the observations, ERA5, IMERG, and CPM for each gauge station and the mountain stations
mean (MTSM). The period over which the data are averaged is station dependent (see Table 1).
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the overpass gaps of 1–2 h, implying that some short-duration
convective events may be missed. The effect of overpass gaps
has already been discussed for other satellite products
(Monsieurs et al. 2018). The resultant biases would, too, be
minimized if the bias correction is done globally and at much
higher temporal scales such as the daily adjustments used in
the Global Satellite Mapping of Precipitation (GSMaP) data-
set (Mega et al. 2014, 2019; X. Tan et al. 2018).

Regarding the generally poor scores of the CPM in the
metrics of MSE, NSE, MAE, RMSE, and Spearman corre-
lation, it is important to note that there is no data assimila-
tion in the CPM, and the estimates are based on pure
modeling with free running physics in the model domain
interior. Therefore, any slight change in the paths and tim-
ing of the weather systems may be strongly penalized in
these metrics.

CPM outperforms both ERA5 and IMERG in capturing
the precipitation PDFs and the extreme precipitation indi-
ces. Thanks to its higher resolution, the gridded product ver-
sus point observation effect has less impact compared to
ERA5 and IMERG. Although it would be expected that
ERA5 and IMERG perform better due to the assimilation
of observations and calibration against observations, respec-
tively, the higher resolution gives CPM an advantage. This
is consistent with results of previous studies, which found a
more prominent role of the spatial resolution for extreme
precipitation simulations, especially at subdaily time scales
(De Troch et al. 2013; Tabari et al. 2016). In our study, as
well, a qualitative comparison of PDFs at daily time scale
and hourly time scale (Fig. A5 in appendix A) gives CPM a
much more advantage at hourly time scale. This indicates
that in this region, precipitation fluctuates both in space and

time, and that a product best suited for these conditions has
to be of high resolution. For example, design of flood con-
trol structures and water infrastructure need precipitation
data with spatial and temporal scales of 1–10 km2 and a few
minutes. The coarse-resolution products cannot, thus, be
implemented directly in these applications, as they may lead
to an underestimation of the design criteria and thereby an
increased failure risk (Tabari et al. 2021).

The effect of resolution on the PDF is further investigated
by regridding both IMERG and CPM to the ERA5 resolu-
tion (∼31 km). Lowering the resolution leads to a deteriora-
tion of the PDF of both IMERG and CPM (Fig. 10, here
shown for the average daily precipitation of the 10 mountain
stations). These coarse-resolution regridded IMERG and
CPM products overestimate the frequency of light rains and
underestimate the frequency of high intensity events. The
deterioration effect (qualitatively) is smaller for IMERG
compared to CPM due to the smaller difference in resolu-
tion in the former.

Notably, even at the coarse resolution of ERA5, CPM
(CPM_E5res) still compares well with higher-resolution
IMERG (Fig. 10), probably due to its convection-permitting
nature and/or the fact that the effective resolution of the
model is finer and therefore some of the benefits of a higher
resolution remain even after regridding to coarser resolution.
Similarly, the earlier seen good representation of extremes
such as the CDD and their timing by CPM could be poten-
tially attributed to the model’s convection permitting nature.
Avoiding parameterization by explicitly simulating convec-
tion has been demonstrated to improve precipitation timing
and intensity estimation for many regions worldwide (Prein
et al. 2013).

FIG. 8. Bias in extreme precipitation indices (product index minus observation index) for every station and the
mountain stations mean (MTSM). The indices shown are (a) monthly maximum 1-day precipitation (Rx1day), (b)
monthly maximum 5-day cumulative precipitation (Rx5day), (c) simple daily intensity index (SDII), (d) days with
more than 20 mm of precipitation (R20mm), (e) consecutive wet days (CWD), and (f) consecutive dry days (CDD).
Lighter shading indicates better performance. See Fig. A4 for the scatterplots.
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5. Conclusions

Precipitation exhibits high variability both in space and
time, and this is especially pronounced for complex terrain of
East African areas such as the Rwenzori Mountains. Since
these areas are prone to precipitation related hazards and its
people mostly thrive on a rain-fed economy, it is important to
develop and/or identify accurate precipitation datasets for
adequate adaptation planning and disaster risk management.
Since in situ observations are scarce, precipitation estimates
are mostly inferred from gridded products like reanalysis, sat-
ellites, and model simulations. This study evaluates three
state-of-the-art precipitation products: ERA5 reanalysis,
IMERG satellite estimates, and a convection-permitting simu-
lation (CPM) with COSMO-CLM, against 11 gauge stations
observations for a period of at least 2.5 years between 2011
and 2016.

Overall, ERA5 has the poorest performance with a persis-
tent wet bias, most pronounced during the rainy season and
for the southeasterly stations located in the rain shadow,
and a strong underestimation of the frequency of high
extreme events. Possible causes are related to the relatively
coarse resolution over complex terrain, and the convection
parameterization of its underlying IFS model. IMERG exhib-
its a good performance in reproducing precipitation totals,

partly attributed to its calibration with gauge data. While
CPM outperforms both ERA5 and IMERG in representing
the precipitation PDF and extreme precipitation indices,
with IMERG and ERA5 overestimating the frequency
of light rain and underestimating that of high precipita-
tion. This better performance of CPM is to a greater
extent because of its higher resolution compared to ERA5
and IMERG.

For all evaluations and comparisons, there is no outstand-
ing difference between respective product performance at the
mountain stations and Lake Kivu station.

Though this study is unique, it being the first to evaluate
these three state-of-the-art products against gauge meas-
urements for the Rwenzori Mountains, further research
would benefit from longer and recent time series of gauge
data. This is particularly important for extreme events
assessment, as the accuracy of the IMERG product is
shown to increase over time owing to the increasing num-
bers of passive microwave samples with higher resolutions
and more frequency channels. In addition, future studies
would benefit from a higher number of gauge stations, pref-
erably well spatially distributed across different elevation
levels, as the current gauges are limited to the Ugandan
side of the mountains and to elevations below 2000 m above
sea level.

FIG. 9. Probability density function of accumulated daily precipitation, with normalized frequency relative to the total number of days. The
y axis is a logarithmic scale.
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Despite these limitations, our study highlights that both
IMERG and CPM exhibit a good skill in estimating precipita-
tion totals, as well as seasonal and diurnal cycles. Hence, both
products can be used, for example, in the assessment of geo-
hydrological hazard risk such as landslides and flash floods,
while preferring CPM for extreme precipitation analysis.
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APPENDIX A

Additional Tables and Figures

Table A1 shows the percentage of dry days of each pre-
cipitation product for each station and mountain stations
mean (MTSM). This table supplements Fig. 9. Dry days are
days with less than 1 mm of precipitation. Figure A1 shows
the location of the weather station at Lake Kivu, denoted
by the red dot on the main map. Lake Kivu is located at
the border between the Democratic Republic of Congo
(DRC) and Rwanda. It is south of the Rwenzori Mountains
as indicated by the black ink below the red cross (the
Rwenzori Mountains) in the inset map of Africa
(Fig. A1). Figure A2 is the same as Fig. 2b, and it shows
the spatial distribution of the mean annual precipitation

TABLE A1. Percentage of dry days, supplementing Fig. 9.

Station
Observations

(%)
ERA5
(%)

IMERG
(%)

CPM
(%)

Mahango 72.3 29.2 55.4 67.2
Ruboni 61.1 21.5 20.3 48.8
Kabonero 66.4 23.8 36.6 56.7
Kluge 60.1 32.4 47.9 59.8
Kilembe 60.2 21.4 24.3 55.4
Bukonzo 63.6 32.7 52.4 55.7
Mubuku 76.2 25.8 60.7 68.8
Bundibugyo 64.1 37.8 53.0 58.4
Bubandi 73.3 47.0 61.9 64.8
Kasitu 71.2 41.0 56.6 66.6
MTSM 38.7 15.2 33.3 37.0
Kivu 60.4 23.4 56.7 49.5

FIG. A1. Location of Lake Kivu. The lower-left corner of the
large map is at 28830′0′′N, 2836′8′′W, and the upper-right corner is
at 29836′4′′N, 1830′6′′W. The gray line along the lake indicates the
border between the Democratic Republic of Congo to the west
and Rwanda to the east. The weather station is indicated by the
red dot and is situated approximately 3.0 km offshore near Goma.
The location of Lake Kivu within Africa is marked on the small
(inset) map by a black ink. The red cross in the small map indicates
the location of the Rwenzori Mountains.

FIG. 10. The average probability density function of the 10
mountain stations including regridded IMERG (IMERG_E5res)
and CPM (CPM_E5res) to the resolution of ERA5. The probabil-
ity density functions are computed on accumulated daily precipita-
tion intensities. The y axis is a logarithmic scale.
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estimates of IMERG for the period 2011–16. Different
from Fig. 2b, here a different color bar scale is used to bet-
ter display the spatial distribution of the precipitation which
could not be clearly displayed in Fig. 2b due to ERA5's
higher value ranges. Figure A3 shows the scatterplots and
the respective correlation coefficients between the products
(ERA5, IMERG, and CPM) and observations for daily pre-
cipitation at all the stations. Similarly, Fig. A4 shows the
scatterplots and the respective correlation coefficients between
the products’ (ERA5, IMERG and CPM) and observations’
extreme precipitation indices. This figure enhances the results
in Fig. 8. Lastly, Fig. A5 is similar to Fig. 9 but for hourly
precipitation values. It shows the probability density function
plots for the for hourly precipitation values at all the stations
and the MTSM.

APPENDIX B

Equations of the Performance Metrics

Bias:

Bias 5
1
N

∑N
n51

Pn 2 On( ),

where N is the total number of data pairs of product esti-
mates (P) and observations (O).

Mean absolute error (MAE):

MAE 5
1
N

∑N
n51

∣∣ Pn 2 On( )∣∣:

Mean square error (MSE):

MSE 5
1
N

∑N
n51

Pn 2 On( )2:

Root-mean-square error (RMSE):

RMSE 5

�����������������������
1
N

∑N
n51

Pn 2 On( )2
√

:

Nash–Sutcliffe efficiency (NSE):

NSE 5 1 2

∑N
n51

Pn 2 On( )2

∑N
n51

On 2 O
( )2 :

Spearman rank correlation (Spearman):

Spearman 5
COV rP 2 rO( )

srP 3 srO
:

The Spearman rank correlation is computed as the ratio of
the covariance of the difference in the ranks of the product
estimates (rP) and observations (rO) to the product of the
standard deviations of the ranks (arP, arO).

Centered root-mean-square difference (RMSD):

RMSD 5

����������������������������������������
1
N

∑N
n51

Pn 2 P
( )

2 On 2 O
( )[ ]2√

,

FIG. A2. Mean annual precipitation estimates of IMERG (Fig. 2b) put to its own scale
to improve visibility.
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Fig. A3. Scatterplots for the daily precipitation. Each row is for a specific station named on the
left of the row. Corr is the Spearman correlation coefficient. For each plot, the product estimate is
plotted on the y axis against observations on the x axis. The data are at a daily time step in
millimeters.
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Fig. A3. (Continued)
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FIG. A4. Scatterplots for the respective extreme precipitation indices. Each row is for a specific index named
at the left of the row. Corr is the Spearman correlation coefficient, Rx1day is the monthly maximum 1-day pre-
cipitation, Rx5day is the monthly maximum 5-day cumulative precipitation, SDII is the simple daily intensity
index, R20mm is the days with more than 20 mm of precipitation, CWD is the consecutive wet days, and CDD
is the consecutive dry days. The product’s index is plotted on y axis against the observation’s index on the
x axis. The data are combined for all the 11 stations over the entire time period.
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where P and O are the mean precipitation of the product
estimates and observations, respectively. It should be noted
that RMSD is centered at the mean unlike RMSE.
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